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Hawking Radiation of Rarita–Schwinger Fields
of a Stationary Charged Black Hole
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Hawking radiation of the Rarita–Schwinger fields in a stationary charged black
hole is studied exactly in region near the event horizon by using the Newman–Penrose
formalism and the tortoise coordinate. The result shows that the temperature of
the thermal radiation spectrum of Rarita–Schwinger fields is exactly the same as that of
the scalar, Dirac, and electromagnetic fields.
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Since the quantum thermal radiation of black hole was found by Hawking
(1975) in 1975, much attention has been focused on the Hawking radiation. The
thermal effect due to the Klein–Gordon scalar field in the Kerr–Newman black
hole, the NUT–Kerr–Newman black hole, Vaidya–Schwarzschild–de-Sitter, and
the radiating rotating charged black hole is studied by Damour and Ruffini (1976),
Ahmed (1987), Daiet al.(1993), and Jing and Wang (1997). The quantum thermal
radiation of the Dirac field in the near extreme Kerr black hole was investigated
by Liu and Xu (1980), the near extreme Kerr–Newman black hole by Zhao and
Gui (1983), and the Kerr–Newman–Kasuya by Ahmed and Mondal (1993). Jing
(2002) recently studied the quantum thermal effect arising from the electromag-
netic fields in the general Kerr–Newman black hole and found that the thermal
radiation spectrum due to the photons is same as that of the Klein–Gordon scalar
particles.

We all know that Rarita–Schwinger fields (Aichelburg and G¨uven, 1981;
Ferrara and van Nieuwenhuizen, 1976; G¨uven, 1981; Silva-Ortigoza, 1996, 1997;
Torres del Castillo, 1989; van Nieuwenhuizen, 1981a) connect with supergravity
theory and supergravity has attractive quantum properties (van Nieuwenhuizen,
1981). It is therefore of considerable interest to ask whether the Rarita–Schwinger
fields may bring new features into black holes. The purpose of this paper is to
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study the quantum thermal effect of the Rarita–Schwinger fields in the stationary
charged black hole.

The supergravity field equations reduce to the equations of general relativ-
ity when the Rarita–Schwinger fields vanish. If the supergravity field equations
(Ferrara and van Nieuwenhuizen, 1976; Townsend, 1977; van Nieuwenhuizen,
1981b) are linearized with respect to the spin-3

2 fields about a solution with van-
ishing spin-32 fields, a consistent set of equations for the Rarita–Schwinger fields
on a background spacetime is given by (Aichelburg and G¨uven, 1981)

8ABC’D’ = 2φABφ̄C′D′ , (1)

3 = R

24
= 0, (2)

∇AB’ψ
j A

C D′ = ∇C D′ψ
j A

AB’ − i
√

2ε jkφA
C ψ̄

k
D′B′A, (3)

where j , k = 1, 2,8ABC’D’ is the trace-free part of the Ricci tensor,φAB is the
electromagnetic spinor, andε jk is the usual Levi–Civita symbol. Equation (1) is
the usual Einstein–Maxwell equation and Eq. (3) can be rewritten as

H j
ABC= H j

(ABC), H j
AB’C’ = 0, (4)

with

H j
ABC≡ ∇R′

(Bψ j |A|C)R′ − i
√

2ε jkφA(Bψk R′|R′|C),

H j A
B′C′ ≡ ∇D

(B′ψ j A|D|C′) − i
√

2ε jkφARψk
(B′C′)R, (5)

where the parentheses denote symmetrization on the indices enclosed and the
indices between bars are excluded from the symmetrization. These equations
are consistent if the background gravitational and electromagnetic fields satisfy
the coupled Einstein–Maxwell equations

∇ A
C′φAB = 0, (6)

and then they are invariant under the supersymmetry transformations

ψ
j

ACD’ → ψ
j

ACD’ +∇C D′α
j
A − i
√

2ε jkφACᾱ
k
D′ , (7)

whereα j
A is a pair of arbitrary spinor fields andαk

C′ = αk
C. By using Eqs. (3) and

(5) and the Ricci identities, one finds thatH j
ABC satisfy (Torres del Castillo, 1989)

∇AR′H j
ABC= 9ABC

Dψ j A R′
D + i

√
2ε jkψK S′R′A∇BS′φAC, (8)

where9ABCD is the Weyl spinor. This spinor dyad defines at each point a null tetrad
(lµ, nµ, mµ, m̄µ). For the case that the background field is algebraically general
and their principal null directions are aligned with those of the Weyl spinor, in a
spin frameoA, `A, such thatφ1 andψ2 are the only nonvanishing components of
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φAB and9ABCD, respectively. By applying Eqs. (3), (5) and the Bianchi and Ricci
identities, we know that the decoupled equations are given by (Torres del Castillo,
1989)

[(D − 2ε + ε̄ − 3ρ − ρ̄)(1− 3γ + µ)

− (δ − 2β − ᾱ − 3τ + π̄ )(δ̄ − 3α + π )−92]H j
0 = 0,

[(1+ 2γ − γ̄ + 3µ+ µ̄)(D + 3ε − ρ)

− (δ̄ + 2α + β̄ + 3π − τ̄ )(δ + 3β − τ )−92]H j
3 = 0, (9)

whereH j
0 ≡ H j

ABCoAoBoC andH j
3 ≡ H j

ABC`
A`B`C.

In Boyer–Lindquist coordinates the Kerr–Newman black hole can be specified
by the null tetrad

lµ = 1

1
(1,−6, 0,−a1 sin2 θ ),

nµ = 1

26
(1,6, 0,−a1 sin2 θ ),

mµ = − ρ̄√
2

(ia sinθ , 0,−6,−i (r 2+ a2) sinθ ),

m̄µ = − ρ√
2

(−ia sinθ , 0,−6, i (r 2+ a2) sinθ ), (10)

with

6 = r 2+ a2 cos2 θ , 1 = (r − r+)(r − r−), r± = M ±
√

M2− a2− Q2,
(11)

wherer+, M , a, and Q represent the radius of the event horizon, the mass, the
angular momentum per unit mass, and the electric charge of the black hole, respec-
tively. The only nonvanishing spin-coefficients, Weyl spinor and electromagnetic
field components are (Chandrasekhar, 1992)

ρ = − 1

r − ia cosθ
, β = − ρ̄ cotθ

2
√

2
, π = iaρ2 sinθ√

2
, τ = − iaρρ̄ sinθ√

2
,

µ = ρ2ρ̄1

2
, γ = µ+ ρρ̄(r − M)

2
, α = π − β̄, (12)

92 = ρ3ρ̄

(
M

ρ̄
+ Q2

)
, φ1 = Q

2
(ρρ̄), (13)

Equations (10), (12), (13), and (9) show thatH j
0 andH j

3 admit separable solutions

H j
0 = aj ei (Et+mϕ) R+3/2(r )2+3/2(θ ), H j

3 = bjρ3 ei (Et+mϕ) R−3/2(r )2−3/2(θ ),
(14)
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wherea j andbj are arbitrary constants and the functionsR±3/2(r ) and2±3/2(θ )
satisfy (Torres del Castillo, 1989)

[1D−1/2D†0 + 4i Er ]13/2R+3/2(r ) = λ213/2R+3/2(r ),

[1D†−1/2D0− 4i Er ]R−3/2(r ) = λ2R−3/2(r ),

[L†−1/2L3/2+ 4Eacosθ ]2+3/2(θ ) = −λ22+3/2(θ )

[L−1/2L†3/2− 4Eacosθ ]2−3/2(θ ) = −λ22−3/2(θ ) (15)

with

Dn = ∂

∂r
+ i K1

1
+ 2n

r − M

1
, D†n =

∂

∂r
− i K1

1
+ 2n

r − M

1
,

Ln = ∂

∂θ
+ K2+ n cotθ , L†n =

∂

∂θ
− K2+ n cotθ , (16)

where K1 = (r 2+ a2)E −ma and K2 = aE sinθ − m
sinθ , E and m are the

energy and angular momentum of the Rarita–Schwinger particle,
respectively. The decoupled equations (15) can then be explicitly
expressed as

1
d2Rs

dr2
+ 5(r − M)

d Rs

dr

+
[
2s+ 4isr E + K 2

1 − 2isK1(r − M)

1
− λ2

]
Rs = 0,

(
s= +3

2

)
,

1
d2Rs

dr2
− (r − M)

d Rs

dr

+
[
4isr E + K 2

1

1
− 2isK1(r − M)

1
− λ2

]
Rs = 0,

(
s= −3

2

)
, (17)

d22s

dθ2
+ cotθ

d2s

dθ
+
[
2maE− a2E2 sin2 θ − m2

sin2 θ
+ 2asEcosθ

+ 2smcosθ

sin2 θ
− s− s2 cot2 θ + λ2

]
2s = 0,

(
s= +3

2

)
(18)

d22s

dθ2
+ cotθ

d2s

dθ
+
[
2maE− a2E2 sin2 θ − m2

sin2 θ
+ 2asEcosθ

+ 2smcosθ

sin2 θ
+ s− s2 cot2 θ + λ2

]
2s = 0,

(
s= −3

2

)
. (19)
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We now introduce the tortoise coordinate in the stationary charged black hole
as

r∗ = r + 1

2κ
ln(r − r+) (20)

whereκ is the surface gravity of the black hole. In the new coordinate Eqs. (17)
and (18) can be cast into

d2Rs

dr2∗
+ 2sκ

d Rs

dr∗
+ [(ω −ÄH m)2− 2isk(ω −ÄH m)]Rs = 0,

(
s= ±3

2

)
,

(21)
whereÄH = a

r 2++a2 is the black hole’s angular. Solving Eq. (21) exactly we find

that both the radial functions for thes= ± 3
2 particles are

Rs(r∗) = Nωe±ikr ∗r ∗,

kr ∗ = (ω −ÄH m),

(
for s= ±3

2

)
, (22)

whereNω is a integral constant. From above discussion we find that the two linearly
independent radial solutions for the Rarita–Schwinger fields can be expressed as

8in(v, r̂ ) = Nin e−iωv,

8out(v, r̂ ) = Nout e
−iωv e2iωr̂ , (23)

wherev = t + r̂ = t + 1
ω

(ω −ÄH m)r∗ is an advanced Eddington–Finkelstein co-
ordinate,8in (v, r̂ ) represents an incoming wave and is an analytic function on the
event horizon;8out (v, r̂ ), however, represents an outgoing wave and has a loga-
rithmic singularity on the horizon. Near the event horizon, the coordinater̂ tends to

r̂ ∼ 1

2κ
ln(r − r+). (24)

Thus, we obtain

8out(v, r̂ ) = Nout e
−iωv(r − r+)iω/κ . (25)

Since on the horizon the outgoing wave function is not analytic we cannot be
extended straightforwardly to the region inside. It must be continued analytically
in the complex plane by going around the event horizon. Then we get

8out (v, r̂ ) = Nout e
−iωv(r+ − r )iω/κ eπω/κ . (26)

The outgoing wave function for both inside and outside region can be written as

8out(v, r̂ ) = Nout{y(r − r+) e−iωv(r − r+) eiω/κ

+ y(r+ − r ) e−iωv(r+ − r )iω/κeπω/κ}, (27)
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wherey(x) is a step function

y(x) =
{

1, x ≥ 0

0, x < 0.
(28)

By using the suggestion of Damour–Ruffini (1976), and the normalization condi-
tion, we get

N2
out =

0ω

exp(2πω/κ)+ 1
= 0ω

exp[2πω/(kBT)] + 1
, (29)

with the temperature

T = κ

2πkB
, (30)

where0ω is the transmission coefficient caused by the potential barrier in the
exterior gravitational field,kB the Boltzmann constant. The formulae (29) and
(30) are the main result demonstrating the emission of a thermal spectrum of the
Rarita–Schwinger fields in the Kerr–Newman black hole.

To summary, the Rarita–Schwinger fields in the Kerr–Newman black hole
is first expressed as the Newman–Penrose formalism and the decouple equations
are obtained. By solving the equations exactly in region near the event horizon,
the Hawking radiation of the Kerr–Newman black hole are obtained. We find
that the quantum thermal radiation spectrum due to the Rarita–Schwinger fields
in the Kerr–Newman black hole does not depend on the spins of the particles,
and the temperature is exactly same as that arising from the scalar, Dirac, and
electromagnetic fields.
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